检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赖茂宏[1]
机构地区:[1]西安石油学院计算机系
出 处:《西安石油学院学报》1992年第4期53-59,共7页Journal of Xi'an Petroleum Institute
摘 要:在科技领域中广泛应用的双三次曲面,一般都按给定曲面特征点(又称控制点)求解,然而在不少实际问题中,例如地层层面的模拟,都是反过来,即知道曲面上的数据点,求解该曲面的特征点,以确定该曲面方程。这是曲面的反演算问题,本文讨论双三次曲面反演算问题,推导出反演算的数学表达式,依特定值找出系数矩阵,并用二次曲线拟合法求出曲面片角点的切矢量,依方程解出曲面的特征点,从而可确定通过离散数据点的曲面方程。Bicubic curved surface is widely used in scientific and technological field. The curved surface is usually defined according to its characteristic points. But in quite a few practical situations, the characteristic points are not or not quite on the bicuzbic curved surface. The simulation of laminated surface is an example of such case. It is a problem of inversive calculation, i. e. the characteristic points of the curved surface are calculated on the basis of the data points so as to establish the equation Of the curved surface. This paper discusses the inversive calculation of bicubic curved surface. It derives the mathematical expression of the inversive calculation. The coefficient matrix is found on the basis of the given conditions. The tangential vector at patch corners have been solved by fitting of quadric curve. The characteristic points of the curved surface are calculated by the expression and the expression of the curved surface passing through the discrete points can thus be established.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3