氧钒(Ⅳ)碱式碳酸铵的热分析和纳米氧化钒的制备  被引量:2

Thermoanalysis of Ammonium Oxovanadium (Ⅳ) Carbonato Hydroxide and Preparation of Powders of Vanadium Oxides

在线阅读下载全文

作  者:韦柳娅[1] 傅群[1] 林晨[1] 储向峰[1] 郑臣谋[1] 

机构地区:[1]中山大学化学与化学工程学院,广州510275

出  处:《无机化学学报》2003年第9期1006-1010,共5页Chinese Journal of Inorganic Chemistry

基  金:国家自然科学基金资助项目(No.59972045);广州市科技局基金资助项目(No.2002J1-C0371)。

摘  要:The violet polycrystalline (NH4)5[(VO)6(CO3)4(OH)9]·10H2O(NVCO) was simply sy nthesized by solution reaction using V2O5, HCl, N2H4·2HCl and NH4HCO3 as the st arting materials. The results of TGA and DTA of NVCO under H2(99.999%) atmosphe re show that V2O3 forms at 620℃. The data of TG/DTG and DTA of NVCO under N2(99 .999%) atmosphere indicate that VO2 forms at 367℃and crystallizes at 390℃. In air atmosphere, the TG/DTG and DTA of NVCO show that V2O5 forms at 354℃, cryst allizes at 366℃and melts at 664℃. The three thermolysis processes of NVCO show that a large amount of H2O, CO2 and NH3 gases fast releases during the thermoly sis of NVCO, causing that the particles of the materials split and atomize stron gly, thus to obtain V2O3, VO2 and V2O5 nano-powders finally. According to the a bove of thermoanalytical results, V2O3, VO2 and V2O5 powders were prepared respe ctively under H2, N2 and oxygen in a tube furnace. Chemical analysis and XRD exp eriments of the powders identify that pure V2O3 is obtained at 800℃for 0.5h und er H2 atmosphere; crystalline VO2 is obtained at 480℃for 0.5h in N2; amorphous VO2 is obtained at 350℃for 20min under N2 atmosphere, this has been first repor ted to prepare amorphous VO2 powder so far; pure V2O5 is obtained at 400℃for 10 min under oxygen. From the micrographs of the powders, the particle size of the V2O3, the crystalline VO2 or the V2O5 powders is 35nm, 24nm or < 40nm, respectiv ely. Above-mentioned results prove that NVCO is a good precursor for preparatio n of pure V2O3, VO2 and V2O5 nano-powders under mild conditions.The violet polycrystalline (NH4)5[(VO)6(CO3)4(OH)9]·10H2O(NVCO) was simply sy nthesized by solution reaction using V2O5, HCl, N2H4·2HCl and NH4HCO3 as the st arting materials. The results of TGA and DTA of NVCO under H2(99.999%) atmosphe re show that V2O3 forms at 620℃. The data of TG/DTG and DTA of NVCO under N2(99 .999%) atmosphere indicate that VO2 forms at 367℃and crystallizes at 390℃. In air atmosphere, the TG/DTG and DTA of NVCO show that V2O5 forms at 354℃, cryst allizes at 366℃and melts at 664℃. The three thermolysis processes of NVCO show that a large amount of H2O, CO2 and NH3 gases fast releases during the thermoly sis of NVCO, causing that the particles of the materials split and atomize stron gly, thus to obtain V2O3, VO2 and V2O5 nano-powders finally. According to the a bove of thermoanalytical results, V2O3, VO2 and V2O5 powders were prepared respe ctively under H2, N2 and oxygen in a tube furnace. Chemical analysis and XRD exp eriments of the powders identify that pure V2O3 is obtained at 800℃for 0.5h und er H2 atmosphere; crystalline VO2 is obtained at 480℃for 0.5h in N2; amorphous VO2 is obtained at 350℃for 20min under N2 atmosphere, this has been first repor ted to prepare amorphous VO2 powder so far; pure V2O5 is obtained at 400℃for 10 min under oxygen. From the micrographs of the powders, the particle size of the V2O3, the crystalline VO2 or the V2O5 powders is 35nm, 24nm or < 40nm, respectiv ely. Above-mentioned results prove that NVCO is a good precursor for preparatio n of pure V2O3, VO2 and V2O5 nano-powders under mild conditions.

关 键 词:氧钒(Ⅳ)碱式碳酸铵 热分析 纳米氧化钒 

分 类 号:O614.511[理学—无机化学] TB383[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象