基于DEA-Tobit二阶段模型的环境支出绩效评价及其影响因素分析——以浙江省为例  被引量:1

Research on Environmental Expenditure Performance of Zhejiang Province Based on Two-step DEA-Tobit Model

在线阅读下载全文

作  者:范燕丽 张雷宝[1] FAN Yanli;ZHANG Leibao(Zhejiang University of Finance&Economics,Hangzhou Zhejiang Province310018,China)

机构地区:[1]浙江财经大学,浙江杭州310018

出  处:《中国发展》2019年第1期7-12,共6页China Development

基  金:浙江省哲学社科基金项目(编号17NDJC168YB)的阶段性成果

摘  要:政府环境支出的有限性使得提高资金的利用效率尤为重要。该文运用DEA-Tobit二阶段模型对浙江省各地级市的政府环境支出绩效和影响因素进行实证分析。研究结果表明,浙江省各地级市政府环境支出绩效存在较大差异且普遍存在较大的提升空间,因此,各地级市应着眼于当地环境治理的薄弱环节,充分利用有限的政府环境保护支出,优化政府环境支出使用结构;在分权制下,将环境支出绩效考核纳入地方官员的日常考核更有利于辖区环境治理绩效的提升。该文丰富和发展了环境支出绩效在地级市层面的研究,为提升政府环境支出绩效提供了理论及实证的支撑。The limitation of environmental expenditure makes it particularly important to improve its efficiency.This study adopts two-step DEA-Tobit model for analyzing environmental expenditure performance and its influencing factors.The experimental results indicate that the environmental expenditure performance of 11 municipalities is quite different and needs to be improved.Therefore,as environmental expenditure becomes comprehensive and targeted,municipalities should pay more attention to the environmental expenditure performance besides increasing environmental expenditure;meanwhile,we should aim at the weak link of local environmental governance,make full use of limited government spending and optimize the environment of government expenditure structure;moreover,integrating environmental expenditure performance assessment into the daily assessment of local officials makes it beneficial for paying more attention to protecting the environment.To conclude,this study has enriched and developed the research on environmental expenditure performance from municipalities and provides theoretical and empirical support on improving environmental expenditure performance.

关 键 词:环境支出 政府环境支出绩效 熵权法 DEA-Tobit二阶段模型 

分 类 号:X321[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象