检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University [2]Department of Physics, Washington University in St. Louis [3]Academy for Advanced Interdisciplinary Studies, Peking University [4]State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications [5]School of Science, Beijing University of Posts and Telecommunications [6]Department of Nuclear Science and Engineering and Department of Materials Science and Engineering,Massachusetts Institute of Technology [7]Collaborative Innovation Center of Quantum Matter
出 处:《Chinese Physics B》2015年第8期87-98,共12页中国物理B(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.11274016 and 11474012);the National Basic Research Program of China(Grant Nos.2013CB932604 and 2012CB619304)
摘 要:Silicene, as the silicon analog of graphene, is successfully fabricated by epitaxially growing it on various substrates.Like free-standing graphene, free-standing silicene possesses a honeycomb structure and Dirac-cone-shaped energy band,resulting in many fascinating properties such as high carrier mobility, quantum spin Hall effect, quantum anomalous Hall effect, and quantum valley Hall effect. The existence of the honeycomb crystal structure and the Dirac cone of silicene is crucial for observation of its intrinsic properties. In this review, we systematically discuss the substrate effects on the atomic structure and electronic properties of silicene from a theoretical point of view, especially with emphasis on the changes of the Dirac cone.Silicene, as the silicon analog of graphene, is successfully fabricated by epitaxially growing it on various substrates.Like free-standing graphene, free-standing silicene possesses a honeycomb structure and Dirac-cone-shaped energy band,resulting in many fascinating properties such as high carrier mobility, quantum spin Hall effect, quantum anomalous Hall effect, and quantum valley Hall effect. The existence of the honeycomb crystal structure and the Dirac cone of silicene is crucial for observation of its intrinsic properties. In this review, we systematically discuss the substrate effects on the atomic structure and electronic properties of silicene from a theoretical point of view, especially with emphasis on the changes of the Dirac cone.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145