检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]复旦大学计算机与信息技术系,上海200433
出 处:《计算机研究与发展》2004年第2期352-360,共9页Journal of Computer Research and Development
基 金:国家"八六三"高技术研究发展计划基金项目 ( 2 0 0 1AA113 181)
摘 要:关联规则挖掘经常产生大量的规则 ,为了帮助用户做探索式分析 ,需要对规则进行有效的组织 聚类是一种有效的组织方法 已有的规则聚类方法在计算规则间距离时都需要扫描原始数据集 ,效率很低 ,而且聚类结果是固定数目的簇 ,不利于探索式分析 针对这些问题 ,提出了一种新的方法 它基于商品分类信息度量规则间的距离 ,避免了耗时的原始数据集扫描 ;然后用OPTICS聚类算法产生便于探索式分析的聚类结构 最后用某个零售业公司的实际交易数据做了实验 ,并通过可视化工具演示了聚类效果Association rule mining often produces a large number of rules. To facilitate exploratory analysis, structuring of rules is needed. A useful method for structuring rules is clustering. All of the existing methods for clustering rules suffer from the costly scan of the original dataset for determining the distances between rules. Moreover, the result of these methods is a fixed number of clusters that makes exploratory analysis difficult. A new method is proposed to overcome these problems. Taxonomy information is used to measure the distances between rules and the expensive scan of the original dataset is avoided. A Clustering algorithm, OPTICS, is applied to generate the clustering structure suitable for exploratory analysis. Finally, an experiment is conducted on a real-life dataset and the experimental result is presented via a visualization tool, which shows that the method is practical and effective.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222