检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京大学管理科学与工程研究院,江苏南京210093
出 处:《重庆交通学院学报》2004年第2期75-78,共4页Journal of Chongqing Jiaotong University
基 金:国家自然科学基金项目(70071049)资助
摘 要:针对某些公路收费站点过多过密的问题,建立了在收费站间距满足一定要求的前提下,使收费盈利最大化的数学规划模型.同时,针对站点设置问题的特殊性,将一个复杂的带有条件约束的非线性整数规划问题转化为一个具有简单约束的线性整数规划问题.并针对整数问题求解的复杂性,提出简化的求解方法.最后,以重庆一国道某路段的收费站分布状况为例进行了实例计算分析,结果表明本文所提出的模型是合理和有效的.A mathematical programming model is proposed in this paper to solve the problem that the intervals between existing toll stations are too small on some highways. In the model,the profit charged from tolls is maximized under the restrictions that separations between toll stations are limited within a given value.Considering the characteristics of the toll station location problem,this complicated nonlinear integer programming problem with conditional constraints is thus converted to a simple linear integer programming problem.In order to reduce the solution complexity of integer programming,a simplified approach is put forward.Finally,one National Highway in Chongqing is taken as an example to illustrate the application of the model. The results show that the model is reasonable and effective.
分 类 号:U412.366.1[交通运输工程—道路与铁道工程] O221.4[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222