三向应力状态下球形孔扩张问题的弹塑性解  被引量:3

Elastic-plastic Solution of Expansion of Spherical Cavities under 3D Loading

在线阅读下载全文

作  者:周小平[1] 张永兴[1] 王建华[2] 

机构地区:[1]重庆大学土木工程学院,重庆400045 [2]上海交通大学建工学院,上海200030

出  处:《重庆建筑大学学报》2004年第1期73-75,101,共4页Journal of Chongqing Jianzhu University

基  金:国家自然科学基金资助(59879012)

摘  要:基于Mohr-Coulomb理论推导的球形孔扩张问题的弹塑性解,没有考虑中间主应力的影响,因而与实际结果有误差。为此,本文利用统一强度理论建立了球形孔扩张问题的统一解形式。利用此解可以合理地得出不同材料的相应解,并且能充分发挥材料自身的承载能力,对实际工程具有重要意义。In elastic-plastic solution of expansion of spherical cavities, based on Mohr-Coulomb strength criterion, the effect of intermediate principal stress on yield and failure of soil is not analyzed. Therefore, there is disparity between results obtained by Mohr-Coulomb strength criterion and those obtained from experimental data. In this paper, the elastic-plastic solution of expansion of spherical cavities, based on unified strength theory is established and unified solutions are obtained. The corresponding solutions of different materials can be obtained. The unified solution cannot only be used to fit the properties of the materials with different tension-pressure strength, but also those with equal tension-pressure strength. The results show that by this solution, full use of the properties of the materials can be attained to reduce supports, which is of important significance for engineering

关 键 词:弹塑性解 球形孔扩张 承载能力 双剪强度理论 应力 

分 类 号:TU313[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象