Short-Term Influence of Herbicide Quinclorac on Enzyme Activities in Flooded Paddy Soils  被引量:8

Short-Term Influence of Herbicide Quinclorac on Enzyme Activities in Flooded Paddy Soils

在线阅读下载全文

作  者:LüZhen-Mei MINHang YEYang-Fang 

机构地区:[1]CollegeofLifeSciences,ZhejiangUniversity,Hangzhou310029(China)

出  处:《Pedosphere》2004年第1期71-76,共6页土壤圈(英文版)

基  金:Project supported by the National Natural Science Foundation of China (No. 30370048) ; the National High Technology Research and Development Program of China (863 Program) (No. 2002A2104101).

摘  要:The influence of quinclorac (3,7-dichloroquinoline-8-carboxylic acid) on enzyme activities in flooded paddy soils was assessed under laboratory conditions. The enzymes differed markedly in their response to quinclorac. Quinclorac inhibited proteinase, hydrogen peroxidase, phosphorylase, and urease activities.The higher the concentration of quinclorac applied, the more significant the inhibition to these observed activities with a longer time required to recover to the level of the control. However, soils supplemented with quinclorac were nonpersistent for proteinase, phosphorylase and urease as opposed to soils without quinclorac. Dehydrogenase activity was also sensitive to quinclorac. Three soil samples with concentrations of quinclorac higher than 1 μg g-1 soil declined to less than 20% of that in the control. However, the highest dehydrogenase activity (up to 3.28-fold) was detected in soils with 2 μg g-1 soil quinclorac on the 25th day after treatment. Quinclorac had a relatively mild effect on saccharase activity at the concentrations used in this experiment and a stimulatory one on soil respiration when added to soil at normal field concentrations.Nonetheless it was inhibited at higher concentrations in paddy soils. Quinclorac is still relatively safe to the soil ecosystem when applied at a normal concentration (0.67 μg g-1 dried soil) but may have some effects on soil enzymes at higher concentrations.The influence of quinclorac (3,7-dichloroquinoline-8-carboxylic acid) on enzyme activities in flooded paddy soils was assessed under laboratory conditions. The enzymes differed markedly in their response to quinclorac. Quinclorac inhibited proteinase, hydrogen peroxidase, phosphorylase, and urease activities. The higher the concentration of quinclorac applied, the more significant the inhibition to these observed activities with a longer time required to recover to the level of the control. However, soils supplemented with quinclorac were nonpersistent for proteinase, phosphorylase and urease as opposed to soils without quinclorac. Dehydrogenase activity was also sensitive to quinclorac. Three soil samples with concentrations of quinclorac higher than 1 μg g-1 soil declined to less than 20% of that in the control. However, the highest dehydrogenase activity (up to 3.28-fold) was detected in soils with 2 μg g-1 soil quinclorac on the 25th day after treatment. Quinclorac had a relatively mild effect on saccharase activity at the concentrations used in this experiment and a stimulatory one on soil respiration when added to soil at normal field concentrations. Nonetheless it was inhibited at higher concentrations in paddy soils. Quinclorac is still relatively safe to the soil ecosystem when applied at a normal concentration (0.67 μg g-1 dried soil) but may have some effects on soil enzymes at higher concentrations.

关 键 词:flooded paddy soil QUINCLORAC soil enzyme activity soil respiration 

分 类 号:S482.4[农业科学—农药学] S153[农业科学—植物保护]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象