Potential control of climatic changes on flood events in the Yangtze Delta during1100-2002  被引量:5

Potential control of climatic changes on flood events in the Yangtze Delta during1100-2002

在线阅读下载全文

作  者:JIANGTong ZHANGQiang YvesGUERNOND 

机构地区:[1]NanjingInstituteofGeographyandLinmology,CAS,Nanjing210008,China [2]KeyLabofWaterloggingandFloodandWetAgricultureofHubeiProvince,Jingzhou434025,China [3]LaboratoireMTG-UMR6063IDEES,UniversitdeRouen,76821Mont-Saint-Aignancedex,France

出  处:《Journal of Geographical Sciences》2004年第1期70-80,共11页地理学报(英文版)

基  金:Sino-France Cooperation Foundation (PRA E02-07); The key project of CAS;No.KZCX3-SW-331; National Natural Science Foundation of China; No.40271112; Foundation of Key Laboratory of Flood and Waterlogging and Wet Land Agriculture of Hubei Province

摘  要:Wide collection on the historic records of the climatic changes and flood events is performed in the Yangtze Delta. Man-Kendall (MK) method is applied to explore the changing trends of the time series of the flood discharge and the maximum high summer temperature. The research results indicate that the flood magnitudes increased during the transition from the medieval warm interval into the early Little Ice Age. Fluctuating climate changes of the Little Ice Age characterized by arid climate events followed by the humid and cold climate conditions give rise to the frequent flood hazards. Low-lying terrain made the study region prone to the flood hazards, storm tide and typhoon. MK analysis reveals that the jumping point of the time series of the flood discharge changes occurred in the mid-1960s, that of the maximum summer temperature changes in the mid-1990s, and the exact jump point in 1993. The flood discharge changes are on negative trend before the 1990s, they are on positive tendency after the 1990s; the maximum high summer temperature changes are on negative trend before the 1990s and on positive tendency after the 1990s. These results indicate that the trend of flood discharge matches that of the maximum high summer temperature in the Yangtze Delta. The occurrence probability of the maximum high summer temperature will be increasing under the climatic warming scenario and which will in turn increase the occurrence probability of the flood events. More active solar action epochs and the higher sea surface temperature index (SST index) of the south Pacific Ocean area lying between 4 o N-4 o S and 150 o W-90 o W correspond to increased annual precipitation, flood discharge and occurrence frequency of floods in the Yangtze Delta. This is partly because the intensified solar activities and the higher SST index give rise to accelerated hydrological circulation from ocean surface to the continent, resulting in increased precipitation on the continent.Wide collection on the historic records of the climatic changes and flood events is performed in the Yangtze Delta. Man-Kendall (MK) method is applied to explore the changing trends of the time series of the flood discharge and the maximum high summer temperature. The research results indicate that the flood magnitudes increased during the transition from the medieval warm interval into the early Little Ice Age. Fluctuating climate changes of the Little Ice Age characterized by arid climate events followed by the humid and cold climate conditions give rise to the frequent flood hazards. Low-lying terrain made the study region prone to the flood hazards, storm tide and typhoon. MK analysis reveals that the jumping point of the time series of the flood discharge changes occurred in the mid-1960s, that of the maximum summer temperature changes in the mid-1990s, and the exact jump point in 1993. The flood discharge changes are on negative trend before the 1990s, they are on positive tendency after the 1990s; the maximum high summer temperature changes are on negative trend before the 1990s and on positive tendency after the 1990s. These results indicate that the trend of flood discharge matches that of the maximum high summer temperature in the Yangtze Delta. The occurrence probability of the maximum high summer temperature will be increasing under the climatic warming scenario and which will in turn increase the occurrence probability of the flood events. More active solar action epochs and the higher sea surface temperature index (SST index) of the south Pacific Ocean area lying between 4 o N-4 o S and 150 o W-90 o W correspond to increased annual precipitation, flood discharge and occurrence frequency of floods in the Yangtze Delta. This is partly because the intensified solar activities and the higher SST index give rise to accelerated hydrological circul

关 键 词:Yangtze  Delta historical  and  instrumental  climate  changes Mann-Kendall  method climate control on flood events 

分 类 号:P467[天文地球—大气科学及气象学] P426.616

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象