THERMO-PIEZOELECTRIC EFFECTS ON THE POSTBUCKLING OF AXIALLY-LOADED HYBRID LAMINATED CYLINDRICAL PANELS  

THERMO-PIEZOELECTRIC EFFECTS ON THE POSTBUCKLING OF AXIALLY-LOADED HYBRID LAMINATED CYLINDRICAL PANELS

在线阅读下载全文

作  者:沈惠申 

机构地区:[1]School of Civil Engineering and Mechanics

出  处:《Applied Mathematics and Mechanics(English Edition)》2004年第1期24-38,共15页应用数学和力学(英文版)

基  金:theNationalNaturalScienceFoundationofChina (50 3 750 91 )

摘  要:A compressive postbuckling analysis is presented for a laminated cylinderical panel with piezoelectric actuators subjected to the combined action of mechanical, electrical and thermal loads. The temperature field considered is assumed to be a uniform distribution over the panel surface and through the panel thickness and the electric field is assumed to be the transverse component E_Z only. The material properties are assumed to be independent of the temperature and the electric field. The governing equations are based on the classical shell theory with von Krmn-Donnell-type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling,which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range,and initial geometric imperfections of the shell,is extended to the case of hybrid laminated cylindrical panels of finite length. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the compressive postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical thin panels with fully covered or embedded piezoelectric actuators under different sets of thermal and electrical loading conditions.The effects played by temperature rise,applied voltage,stacking sequence,the character of in-plane boundary conditions,as well as initial geometric imperfections are studied.A compressive postbuckling analysis is presented for a laminated cylinderical panel with piezoelectric actuators subjected to the combined action of mechanical, electrical and thermal loads. The temperature field considered is assumed to be a uniform distribution over the panel surface and through the panel thickness and the electric field is assumed to be the transverse component E_Z only. The material properties are assumed to be independent of the temperature and the electric field. The governing equations are based on the classical shell theory with von Krmn-Donnell-type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling,which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range,and initial geometric imperfections of the shell,is extended to the case of hybrid laminated cylindrical panels of finite length. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the compressive postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical thin panels with fully covered or embedded piezoelectric actuators under different sets of thermal and electrical loading conditions.The effects played by temperature rise,applied voltage,stacking sequence,the character of in-plane boundary conditions,as well as initial geometric imperfections are studied.

关 键 词:POSTBUCKLING hybrid laminated cylindrical panel thermo-piezoelectric effect boundary layer theory of shell buckling singular perturbation technique 

分 类 号:O342[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象