A TWO-LEVEL FINITE ELEMENT GALERKIN METHOD FOR THE NONSTATIONARY NAVIER-STOKES EQUATIONS I: SPATIAL DISCRETIZATION  被引量:4

在线阅读下载全文

作  者:Yin-nianHe 

机构地区:[1]FacultyofScience(StateKeyLaboratoryofMultiphaseFlowinPowerEngineering),Xi'anJiaotongUniversity,Xi'an710049,China

出  处:《Journal of Computational Mathematics》2004年第1期21-32,共12页计算数学(英文)

摘  要:In this article we consider a two-level finite element Galerkin method using mixed finite elements for the two-dimensional nonstationary incompressible Navier-Stokes equations. The method yields a H^1-optimal velocity approximation and a L^2-optimal pressure approximation. The two-level finite element Galerkin method involves solving one small,nonlinear Navier-Stokes problem on the coarse mesh with mesh size H, one linear Stokes problem on the fine mesh with mesh size h <<H. The algorithm we study produces an approximate solution with the optimal, asymptotic in h, accuracy.

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象