检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学电机工程与应用电子技术系,北京100084
出 处:《中国电机工程学报》2004年第1期1-5,共5页Proceedings of the CSEE
基 金:国家重点基础研究专项经费项目(G1998020309)~~
摘 要:依据非线性动力系统理论,稳定域边界应由其所有不稳定平衡点的稳定流形的并集构成。该文采用一种新的方法寻找不稳定平衡点的稳定流形,该方法可确定平衡点的稳定流形所满足的偏微分方程。在此基础上,该文运用偏微分方程的二阶近似解,即二次超曲面,来近似不稳定平衡点局部的稳定域边界。与对角化或规范型(normal form)方法相比,该方法避免了求解Jacobian矩阵的全部特征根,从而使计算量显著下降。实际仿真结果表明,该方法取得了较好的局部近似效果,此局部近似结果有助于对稳定域边界形状的分析和研究,且对直接法的结果具有一定的参考和比较价值。According to the theory of nonlinear dynamic system, the stability boundary is the union of the stable manifolds of the equilibrium points on the stability boundary. In this paper a new method is adopted to search for the stable manifolds of unstable equilibrium points so that the stable manifolds of equilibrium points are found easily through partial differential equations. Furthermore, local stability boundary of the unstable equilibrium points is approximated by the second order hyper surfaces. Differing from the diagonalizable transformation or normal form, the method avoids solving all eigenvalues of the Jacobian matrixes except the eigenvalue with positive real part, and so the time-consuming computation is reduced greatly. The simulation results prove that the method has a high approximation precision to the local stability boundary. It not only helps to study the shape of stability boundary but also has some significance for the direct stability analysis method.
关 键 词:电力系统 暂态稳定分析 域边界 局部近似方法 非线性大系统
分 类 号:TM712[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117