检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院国家授时中心
出 处:《天文学进展》2004年第1期45-56,共12页Progress In Astronomy
基 金:国家自然科学基金资助项目(10273015)
摘 要:1986年“旅行者2号”飞越天王星期间,由空间无线电和光学观测获得的卫星资料首次给出天王星5颗主要卫星质量的可靠估计,从而推动了现代天王星卫星运动定量理论的建立。Laskar于1986年建立了第一个相对完整的天王星主要卫星的(半)分析理论-GUST86,其高精度已被许多学者的实算证实。之后,对理论的改进作出贡献的学者有:Malhotra等人(1989)、Lazzaro等人(1987,1991)分析研究了天王星卫星系统中近共振项对长期摄动解的影响;Taylor(1998)采用数值积分拟合观测资料,以更精确地测定卫星质量;Christou和Murray(1997)则将一个2阶Laplace-Lagrange理论应用于天王星卫星系统。对这些学者的工作作一概述。The data of the satellites acquired by spacecraft-centered radio and optical observations during the Voyager 2 encountering Uranus provide the first reliable estimation of the masses of all five major satellites. Contemporary quantitative theories on the motion of the Uranian satellites have been promoted. Laskar (1986) developed the first relatively complete (semi-) analytical theory (GUST86) with its high accuracy being confirmed by some authors. After that, the contributions of the refinement on the theory should be mentioned Malhotra (1989), Lazzaro (1987, 1991), investigated the effect of the near-resonance on the secular motion of the satellites; Taylor (1998), re-determined the masses of the five major satellites by the theoretical fitting into observations through numerical integration; Christou and Murray (1997) applied a second order Laplace-Lagrange theory to the satellite system. A general survey of how the quantitative theories of motion for the Uranian satellites was set up and developed is presented in the paper.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49