检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学电力学院,广东广州510640 [2]广东移动通信有限责任公司广州分公司网维中心动力室,广东广州510091
出 处:《中国电机工程学报》2004年第3期165-168,共4页Proceedings of the CSEE
摘 要:与 PAM(极幅调制)理论相比,最小对称组理论可更有效地实现交流电机变极绕组非正规方案。为了完善最小对称组理论,就仅变前极极对数 p1 为非 3 倍数的情形对之进行研究,提出并证明了此时最小对称组槽数 Ns 的取值定理。该文所用的证明方法是基于二维槽号相位图、单元绕组和最大公约数法则。所得结论是:当仅 p1 为非 3 倍数时最小对称组槽数 Ns 的取值可能为 N1,可能为 2N1,也可能不存在,这里 N1 是变前极每极每相槽数化为既约分数时的分子。Compared with PAM (Pole Amplitude Modula- tion) theory, the minimum symmetric group theory is more effective in implementation of AC machine pole-changing winding’s non-regular arrangements. In order to make the theory perfect, this paper will investigate the theory in the case that only p1 is non-triples. A evaluation theorem of slot-number Ns of the minimum symmetric group is proposed and proved in this paper when only p1 is non-triples. The proof method used in this paper is based on two-dimension slot-number phase diagram, unit winding, and the maximum common divided principles. The conclusions are that when only p1 is non-triples, the values of the minimum symmetric group slot-numbers Ns may be N1, may be 2N1, and may be not existed, with N1 being the numerator of slot-number per pole per phase which is reduced to the simplest fraction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15