交流电机绕组理论中仅p_1为非3倍数时最小对称组槽数的研究  被引量:3

STUDY ON THE SLOT NUMBER INSIDE THE MINIMUM SYMMETRY GROUP WITH ONLY p1BEING TRIPLE IN AC MACHINE WINDING THEORY

在线阅读下载全文

作  者:程小华[1] 扶庆明 

机构地区:[1]华南理工大学电力学院,广东广州510640 [2]广东移动通信有限责任公司广州分公司网维中心动力室,广东广州510091

出  处:《中国电机工程学报》2004年第3期165-168,共4页Proceedings of the CSEE

摘  要:与 PAM(极幅调制)理论相比,最小对称组理论可更有效地实现交流电机变极绕组非正规方案。为了完善最小对称组理论,就仅变前极极对数 p1 为非 3 倍数的情形对之进行研究,提出并证明了此时最小对称组槽数 Ns 的取值定理。该文所用的证明方法是基于二维槽号相位图、单元绕组和最大公约数法则。所得结论是:当仅 p1 为非 3 倍数时最小对称组槽数 Ns 的取值可能为 N1,可能为 2N1,也可能不存在,这里 N1 是变前极每极每相槽数化为既约分数时的分子。Compared with PAM (Pole Amplitude Modula- tion) theory, the minimum symmetric group theory is more effective in implementation of AC machine pole-changing winding’s non-regular arrangements. In order to make the theory perfect, this paper will investigate the theory in the case that only p1 is non-triples. A evaluation theorem of slot-number Ns of the minimum symmetric group is proposed and proved in this paper when only p1 is non-triples. The proof method used in this paper is based on two-dimension slot-number phase diagram, unit winding, and the maximum common divided principles. The conclusions are that when only p1 is non-triples, the values of the minimum symmetric group slot-numbers Ns may be N1, may be 2N1, and may be not existed, with N1 being the numerator of slot-number per pole per phase which is reduced to the simplest fraction.

关 键 词:交流电机 绕组理论 变极绕组 最小对称组理论 槽数 

分 类 号:TM34[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象