基于模态缩减和模态实验数据的结构连接参数识别方法  被引量:2

Identification of Joint Parameters Using Modal Reducing Method and Modal Experimental Data

在线阅读下载全文

作  者:韩军[1] 陈怀海[1] 鲍明[1] 

机构地区:[1]南京航空航天大学,南京210016

出  处:《应用力学学报》2004年第1期113-116,共4页Chinese Journal of Applied Mechanics

摘  要:利用在结构系统可测自由度上获得的不完备模态参数和子结构的有限元模型 ,根据模态缩减理论 ,建立了识别子结构间连接子结构参数的优化模型 ,采用逐次二次规划法求解 ,改善了测试噪声和模态截断误差的影响。该方法识别精度高、收敛速度快、计算量小 。Based on the modal reduction method, incorporating the substructure finite element model with the incomplete modal parameters measured from the assembled structure, an efficient method for the joint physical parameters identification is presented in this paper. In the process, the modal reduction method is employed to reduce the freedoms of assembled structures in order to decrease the amount of computation, the optimization model for sequence quadratic programming is established by treating the two norms of the frequency difference between the condensed model and the measured frequency as the objective function, the sensitivity matrix of eigenvalues as the gradient vectors, and parts of eigenvectors as constraints. The numerical example shows that the presented procedure can successfully identify the joint parameters from modal parameters with noise for condensed model.

关 键 词:模态缩减 逐次二次规划 连接子结构 物理参数 参数识别 截断误差 

分 类 号:TH131[机械工程—机械制造及自动化] O32[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象