检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学电子工程与光电技术学院,江苏南京210094
出 处:《电波科学学报》2004年第1期13-16,共4页Chinese Journal of Radio Science
基 金:国家自然科学基金资助项目 (6 0 1710 17)
摘 要:渐近波形估计 (AWE)方法是数值计算中一种非常有效的外推方法。这种方法已经获得广泛的应用。但用尺寸作变量时 ,AWE方法会遇到尺寸求导的问题。该文采用固定网格数 ,引入尺寸伸缩系数的方法 ,把AWE方法推广到了尺寸维。微带贴片静电电容的计算实例表明该方法是可行的。The method of asymptotic waveform evaluation (AWE) is a very efficient extrapolation method in numerical computation. The frequency, dielectric constant or angle is taken as variables of the AWE method. In optimization design, however, the size of a structure is usually an important parameter. When the size is taken as the variable of AWE method, the derivatives with respect to the size has to be considered. By fixing the mesh shape and introducing a size variable coefficient, the AWE method is extended into size dimension. As an example, the capacitance of a microstrip patch is calculated. The numerical results show that the method is feasible and is extremely powerful when only small part of the whole structure changes. The presented method can be also extended into dynamic problems. The combination of this method with the conventional AWE method may increase the dimensions of AWE method.
关 键 词:电磁计算 渐进波形估计 静电 尺寸维 矩量法 AWE
分 类 号:TM15[电气工程—电工理论与新技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117