检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学学报(中文版)》2004年第3期449-454,共6页Acta Mathematica Sinica:Chinese Series
基 金:辽宁省自然科学基金(2001102084)
摘 要:以N(m,n;λ,μ)表示在m×n的矩形格的左上角和右下角分别删掉分拆λ和μ的Ferrers图后从左下角到右上角格路的数目。Simion猜想对任意分拆λ,N(l-k,k;λ,φ)关于k是对数凹的,本文证明了,如果序列x0,x1,…,xn为对数凹的,则序列yk=∑i=k^n(a+i b+k)xi亦为对数凹的,并给出其对Simion猜想的应用。本文还证明对所有分拆λ和μ,N(l-k,k;λ,μ)关于k是对数凹的。Denote by N(m, n;λ,μ) the number of lattice paths from the lower left corner to the upper right corner in an m×n grid with the Ferrers diagrams of two partitions λ and μ being removed from the upper left corner and the lower right corner respectively. Simion's conjectured that N(e-k, k;λ,θ) is log-concave in k. Here we show that if the sequence x_0, x_1,..., x_n is log-concave, then the sequence y_k x_i is also log- concave, and present an application of this result to Simion's conjecture. Furthermore, we show that N(e-k, k;λ,μ) is log-concave in k for all partitions λand μ
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15