检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中山大学地理科学与规划学院,广州510275 [2]香港大学城市规划及环境管理研究中心 [3]广州地理研究所,广州510070
出 处:《遥感学报》2004年第3期246-253,共8页NATIONAL REMOTE SENSING BULLETIN
基 金:国家自然科学基金项目 (批准号 40 0 710 60 )
摘 要:提出了基于案例推理 (CBR)的遥感分类的新方法。基于规则的专家系统被用来提高遥感分类的效率。但所涉及的规则可能多达上百或上千条 ,有的问题根本无法用规则来表达。CBR只是根据以往的案例进行推理 ,克服了基于规则的推理方法的不足 ,可以用来解决一些复杂的资源环境问题。利用CBR和模糊数学结合 ,并通过分层随机采样来控制案例在空间上的分布 ,以反映复杂环境所造成的光谱变化 ,由此解决遥感分类中的“同物异谱”现象。实验表明 ,所建立的案例库可以被重复多次使用 ,分类的效果比监督分类和非监督分类要好。This paper presents a new method for classifying satellite SAR images based on case based reasoning (CBR) techniques. Because classification is a common task in remote sensing applications, numerous methods have been deve loped for obtaining better classification results. Knowledge based systems (KBS) are considered as a good alternative to traditional classification methods with better performance. There is a need to develop such systems to facilitate the interpretation of remote sensing data in a more efficient way. KBS are useful when concrete knowledge about the application domain is available. It is expected that KBS can automatically classify remote sensing images without operator's intervention. However, these systems have a bottleneck problem in the solicitation of rules. A solution is to apply CBR method to the classification process. Traditional classification often assumes that spectral properties of a class remain stable in the whole study area. However, the spectral signature of a class is usually subject to fluctuations because of the complexity in nature. The CBR method can easily capture such fluctuations by allocating cases over different terrain features according to stratified random sampling. Moreover, the same case library developed in the previous classification can be reused for time independent classification with satisfactory results. Experiments show that the proposed method can generate the classification results with better performance in term of higher accuracy and fast computation time. The method has been successfully applied to the classification of radar SAR images in the Pearl River Delta, south China.
分 类 号:TP79F30124[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112