ON A CLASS OF BESICOVITCH FUNCTIONS TO HAVE EXACT BOX DIMENSION: A NECESSARY AND SUFFICIENT CONDITION  被引量:1

ON A CLASS OF BESICOVITCH FUNCTIONS TO HAVE EXACT BOX DIMENSION: A NECESSARY AND SUFFICIENT CONDITION

在线阅读下载全文

作  者:ZhouSongping HeGuolong 

机构地区:[1]ZhejiangInstituteofScienceandTechnology,ChinaNingboUniversity,China [2]ZhejiangNormalUniversity,China

出  处:《Analysis in Theory and Applications》2004年第2期175-181,共7页分析理论与应用(英文刊)

基  金:Research supported by national Natural Science Foundation of China (10141001);Zhejiang Provincial Natural Science Foundation 9100042 and 1010009.

摘  要:This paper summarized recent achievements obtained by the authors about the box dimensions of the Besicovitch functions given bywhere 1 < s < 2, λk> tends to infinity as k→∞ and λk satisfies λk+1/λk≥λ>1. The results show thatis a necessary and sufficient condition for Graph(B(t)) to have same upper and lower box dimensions. For the fractional Riemann-Liouvtlle differential operator Du and the fractional integral operator D-v, the results show that if A is sufficiently large, then a necessary and sufficient condition for box dimensionof Graph(D-v(B)), 0 < v < s - 1, to be s - v and box dimension of Graph(Du(B)), 0 < u < 2 - s, to bes + u is also lim.This paper summarized recent achievements obtained by the authors about the box dimensions of the Besicovitch functions given bywhere 1 < s < 2, λk> tends to infinity as k→∞ and λk satisfies λk+1/λk≥λ>1. The results show thatis a necessary and sufficient condition for Graph(B(t)) to have same upper and lower box dimensions. For the fractional Riemann-Liouvtlle differential operator Du and the fractional integral operator D-v, the results show that if A is sufficiently large, then a necessary and sufficient condition for box dimensionof Graph(D-v(B)), 0 < v < s - 1, to be s - v and box dimension of Graph(Du(B)), 0 < u < 2 - s, to bes + u is also lim.

关 键 词:Weierstrass function Besicovitch function fractal dimension box dimension Hard- mard condition 

分 类 号:O175.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象