检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄雅丽[1] 李旦振[1] 付贤智[1] 王绪绪[1]
出 处:《无机化学学报》2004年第7期868-872,共5页Chinese Journal of Inorganic Chemistry
基 金:国家自然科学基金重点项目(No.20133010);国家自然科学基金项目(No.20273014);教育部科技重点项目(No.03061;01059);福建省自然科学基金重大项目(No.2003F004;2002H008);福建省教育厅重点项目(No.JA02138;JA01002)资助。
摘 要:The Gd3+-doped TiO2 photocatalyst was prepared by the sol-gel and impregnation method. The effect of Gd3+ doping on crystalline size, BET surface area and photocatalytic activity was studied by XRD, FTIR, BET, UV-Vis diffuse reflection spectroscopy, surface photovoltage spectroscopy (SPS). The activities of TiO2 and Gd3+-doped TiO2 catalysts for photocatalytic degradation of ethylene were studied by means of in situ FTIR. The photocatalytic reaction rate constant of ethylene becomes larger through Gd3+ doping. The rate constant of TiO2 was k1=8.51×10-4 min-1, while that of Gd/TiO2 was k2=1.85×10-3 min-1. At the same time, the yield of CO2 increased with Gd3+ doping. The enhancement in photocatalytic activity is probably due to the increase of light absorption, higher content of anatase, smaller crystal line size and higher specific surface area. In addition, the higher photocatalytic activity of Gd3+-doped TiO2 might be attributed to the effective separation of photo-generated electron-hole pairs.The Gd3+-doped TiO2 photocatalyst was prepared by the sol-gel and impregnation method. The effect of Gd3+ doping on crystalline size, BET surface area and photocatalytic activity was studied by XRD, FTIR, BET, UV-Vis diffuse reflection spectroscopy, surface photovoltage spectroscopy (SPS). The activities of TiO2 and Gd3+-doped TiO2 catalysts for photocatalytic degradation of ethylene were studied by means of in situ FTIR. The photocatalytic reaction rate constant of ethylene becomes larger through Gd3+ doping. The rate constant of TiO2 was k(1)=8.51 x 10(-4) min(-1), while that of Gd/TiO2 was k(2)=1.85x10(-3) min(-1). At the same time, the yield of CO2 increased with Gd3+ doping. The enhancement in photocatalytic activity is probably due to the increase of light absorption, higher content of anatase, smaller crystal line size and higher specific surface area. In addition, the higher photocatalytic activity of Gd3+-doped TiO2 might be attributed to the effective separation of photo-generated electron-hole pairs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74