检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津师范大学数学科学学院,天津
出 处:《应用数学进展》2017年第9期1182-1186,共5页Advances in Applied Mathematics
摘 要:对于任意图G和正整数k,如果图G中所有长度为k的路都至少含有其顶点子集S中的点,那么我们称顶点子集S为k路顶点覆盖集。我们定义最小的集合S的基数为φk(G),并且称它为图G的k路顶点覆盖数.本文我们主要研究了笛卡尔乘积图的k路顶点覆盖数问题,并给出了φk(Cm□PN2)的估计值。For a graph G and a positive integer k, a subset S of vertices of G is called a k-path vertex cover if S intersects all paths of order k in G. The cardinality of a minimum k-path vertex cover is denoted by φk(G), and is called the k-path vertex cover number of G. In this paper, we study some Cartesian products and give several estimations of φk(Cm□PN2).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.146.86