检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁师范大学数学学院,辽宁 大连
出 处:《应用数学进展》2023年第3期1152-1163,共12页Advances in Applied Mathematics
摘 要:本文将传统的隐马尔科夫模型中用于参数学习的Baum-Welch算法改进为变分贝叶斯算法,并将变分贝叶斯隐马尔科夫模型应用于股票价格指数预测,分别选取国外市场美股S&P500指数以及国内市场沪深300指数进行预测,并与传统的隐马尔科夫模型、BP神经网络、ARIMA模型相比较,得出结论变分贝叶斯隐马尔科夫模型对于大规模数据处理更有优势,运算速度快且预测精度更高。In this paper, the Baum-Welch algorithm used for parameter learning in the traditional Hidden Markov Model is improved to the variational Bayes algorithm, and the variational Bayes Hidden Markov model is applied to the stock price index prediction. The S&P500 index of the United States stock in foreign markets and the HuShen300 index of the domestic market are selected for predic-tion. Compared with the traditional Hidden Markov Model, BP neural network and ARIMA model, it is concluded that the variational Bayes Hidden Markov Model has more advantages for large- scale data processing, and the operation speed is more faster and the prediction accuracy is higher.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117