检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学数学学院,山西 太原
出 处:《应用数学进展》2023年第4期1655-1663,共9页Advances in Applied Mathematics
摘 要:一个铁路区段在规划时间内的时空网络是一个仅包含一对源与汇的有向无圈平面图。每个列车都可由该网络中的一条有向路表示。本文研究上述网络中的最小路覆盖问题,即至少用多少条有向路可以覆盖图中所有的边。根据单平面有向无圈图的单源单汇和平面性等结构性质,本文给出了上述问题的一个时间复杂度为O(nk)的精确算法,这里n表示图中顶点数、k表示图中最大有向割所包含边的数目。The space-time network of a railway section in the planning time is a directed acyclic graph that contains only a pair of sources and sinks. Each train can be represented by a directed path in the network. In this paper, we study the minimum path covering problem in the above network, that is, at least how many directed paths can cover all edges in the network. According to the structural properties of single-source, single-sink and planarity, we give an O(nk) time exact algorithm to solve the minimum path covering problem in single planar directed acyclic graph, where n is the number of vertices in graph and k is the number of edges in the maximum directed cut.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.112.141