非守恒双曲方程组的路径守恒ADER间断Galerkin方法:在浅水方程中的应用  

A Path-Conservative ADER Discontinuous Galerkin Method for Non-Conservative Hyperbolic Equations: Applications in Shallow Water Equations

在线阅读下载全文

作  者:赵晓旭 刘仁迪 钱守国 李刚 

机构地区:[1]青岛大学数学与统计学院,山东 青岛

出  处:《应用数学进展》2023年第7期3381-3397,共17页Advances in Applied Mathematics

摘  要:本文提出了求解非守恒双曲型偏微分方程的一种新的路径守恒间断Galerkin (DG)方法。特别地,这里的方法采用了一级ADER (在空间和时间的任意导数)方法来实现时间离散化。此外,该方法采用微分变换(DT)过程而不是Cauchy-Kowalewski (C-K)过程来实现局部时间演化。与经典的ADER方法相比,该方法不需要求解内部单元的广义黎曼问题。与RKDG (Runge-Kutta DG)方法相比,该方法不需要中间步骤,因此需要较少的计算机存储空间。简而言之,当前的方法是一步一步完全离散的。而且,该方法在空间和时间上都容易获得高阶精度。浅水方程的数值结果表明,该方法具有较高的阶精度,对间断解具有较好的分辨率。In this article, we propose a new path-conservative discontinuous Galerkin (DG) method to solve the non-conservative hyperbolic partial differential equations (PDE). In particular, the method here applies the one-stage ADER (Arbitrary DERivatives in space and time) approach to fulfill the tem-poral discretization. In addition, this method uses the differential transformation (DT) procedure other than the Cauchy-Kowalewski (C-K) procedure to achieve the local temporal evolution. Com-pared with the classical ADER methods, the current method is free of solving generalized Riemann problems at inter-cells. In comparison with the Runge-Kutta DG (RKDG) methods, the proposed method needs less computer storage thanks to no intermediate stages. In brief, this current method is one-step, one-stage, and fully-discrete. Moreover, this method can easily obtain arbitrary high-order accuracy in space and in time. Numerical results for shallow water equations (SWEs) show that the method enjoys high-order accuracy and keeps good resolutions for discontinuous so-lutions.

关 键 词:非守恒双曲方程组 ADER的方法 DG方法 DT过程 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象