检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]青岛大学数学与统计学院,山东 青岛
出 处:《应用数学进展》2023年第7期3381-3397,共17页Advances in Applied Mathematics
摘 要:本文提出了求解非守恒双曲型偏微分方程的一种新的路径守恒间断Galerkin (DG)方法。特别地,这里的方法采用了一级ADER (在空间和时间的任意导数)方法来实现时间离散化。此外,该方法采用微分变换(DT)过程而不是Cauchy-Kowalewski (C-K)过程来实现局部时间演化。与经典的ADER方法相比,该方法不需要求解内部单元的广义黎曼问题。与RKDG (Runge-Kutta DG)方法相比,该方法不需要中间步骤,因此需要较少的计算机存储空间。简而言之,当前的方法是一步一步完全离散的。而且,该方法在空间和时间上都容易获得高阶精度。浅水方程的数值结果表明,该方法具有较高的阶精度,对间断解具有较好的分辨率。In this article, we propose a new path-conservative discontinuous Galerkin (DG) method to solve the non-conservative hyperbolic partial differential equations (PDE). In particular, the method here applies the one-stage ADER (Arbitrary DERivatives in space and time) approach to fulfill the tem-poral discretization. In addition, this method uses the differential transformation (DT) procedure other than the Cauchy-Kowalewski (C-K) procedure to achieve the local temporal evolution. Com-pared with the classical ADER methods, the current method is free of solving generalized Riemann problems at inter-cells. In comparison with the Runge-Kutta DG (RKDG) methods, the proposed method needs less computer storage thanks to no intermediate stages. In brief, this current method is one-step, one-stage, and fully-discrete. Moreover, this method can easily obtain arbitrary high-order accuracy in space and in time. Numerical results for shallow water equations (SWEs) show that the method enjoys high-order accuracy and keeps good resolutions for discontinuous so-lutions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.218.162