检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海师范大学数理学院,上海
出 处:《应用数学进展》2023年第10期4415-4436,共22页Advances in Applied Mathematics
摘 要:本文研究多层结构下一维非线性粘性方程组的粘性消失极限问题,证明当两个不相互作用的激波满足摘条件时,粘性方程组的解与无粘方程组的解之间具有渐近等价性。 该问题的证明使用了与粘性激波剖面稳定性理论相关的匹配渐近分析和能量估计。 我们首先通过多尺度的匹配渐近展开方法构造粘性方程组的近似解,再通过能量估计的方法进行稳定性分析从而得出最终结论。In this thesis, we study the vanishing viscous limit of one-dimensional nonlinear viscous system with multi-layer structure. It is proved that when two non-interacting shock waves satisfy the entropy condition for the inviscid system, the asymptotic equivalence can be achieved between the solution of the viscous system and the solution of the inviscid system. This is proved based on matched asymptotic analysis and energy estimate related to the stability theory of viscous shock profile. First, the approximate solution of the viscosity system is constructed by the multi-scale matched asymptotic expansion method, and then the final conclusion is obtained by the stability analysis with the method of energy estimate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.45.133