检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学数学学院,山西 晋中
出 处:《应用数学进展》2024年第2期531-538,共8页Advances in Applied Mathematics
摘 要:连通图G的超边连通度是指使得图G不连通且每个连通分支没有孤立点要删除的最少的边数,用表示。图G和H的直积,定义为G×H,是顶点集为V(G×H)=V(G)×V(H)的图,其中两个顶点(u1,v1)和(u2,v2)在G×H相邻当且仅当u1u2εE(G)且v1v2εE(H)。马天龙等人证明了G和完全图Kn的直积的超边连通度。本文证明了当n≥4且n为偶数时,一类图G和圈Cn的直积的超边连通度为。The super edge-connectivity of a connected graph G, denoted by , is the minimum number of edges whose deletion disconnects the graph such that each connected component has no isolated vertices. The direct product of graphs G and H, denoted by G×H , is the graph with vertex set V(G×H)=V(G)×V(H) , where two vertices (u1,v1) and (u2,v2) are adjacent in G×H if and only if u1u2εE(G) and v1v2εE(H) . Tianlong Ma et al. proved the super edge-connectivity of the direct product of G and complete graph. In this paper, it is proved that for a family of a graph G, where n≥4 and n is even.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49