检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘晨晨
机构地区:[1]河北工业大学理学院,天津
出 处:《应用数学进展》2024年第3期1008-1017,共10页Advances in Applied Mathematics
摘 要:随机梯度下降算法已成为求解大规模有限和优化问题的流行算法,然而,由于其在迭代过程中会产生方差,导致了振荡现象。随机控制的随机梯度(SCSG)算法缩减了该方差,但SCSG算法对于步长有较强的限制。为了扩大SCSG算法的步长选择范围,基于1/t-带步长与Polyak步长,提出1/t-Polyak步长,并将其与SCSG算法结合,提出SCSGP算法。建立了SCSGP算法在强凸条件下的线性收敛性,数值实验表明SCSGP算法与其他随机梯度类算法相比有明显优势。The stochastic gradient descent algorithm has become popular algorithm for solving large-scale finite-sum optimization problems. However, this algorithm leads to oscillations due to the variance in the iterative process. The stochastically controlled stochastic gradient (SCSG) algorithm reduces this variance, but the SCSG algorithm has strong limit on stepsize. To expand the range of stepsize selection of the SCSG algorithm, we propose 1/t-Polyak stepsize by combining the 1/t-band stepsize and the Polyak stepsize. Using this new stepsize for the stochastically controlled stochastic gradient (SCSG) algorithm, the SCSGP algorithm is proposed. We establish the linear convergence rate of SCSGP for strongly convex problems. Numerical experiments demonstrate a clear advantage of SCSGP over other stochastic gradient algorithms.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120