基于统计复杂度下双稳态能量采集系统的随机共振分析  

Stochastic Resonance Analysis of Bistable Energy Harvesting Systems Based on Statistical Complexity

在线阅读下载全文

作  者:乔艳辉 

机构地区:[1]兰州交通大学数理学院,甘肃 兰州

出  处:《应用数学进展》2024年第3期1116-1128,共13页Advances in Applied Mathematics

摘  要:针对高斯白噪声和周期信号共同作用下双稳态能量采集系统,运用统计复杂度方法度量了系统的随机共振行为和采能效率。首先,借助数值方法计算了系统的统计复杂度和有效输出功率;其次,深入探究了噪声强度、耦合系数等参数对系统随机共振现象与采能效率的影响;最后,从信息论的角度阐释了随机共振与系统采能效率之间的作用规律。结果表明,统计复杂度曲线的非单调演化趋势意味着系统产生了随机共振现象;选取合适的噪声强度、耦合系数及阻尼系数等能够增强系统的随机共振行为。此外,均方电压和有效输出功率曲线与统计复杂度曲线具有相同的演化规律,即当系统产生随机共振行为时,采能效率达到最大化。Aiming at the bistable energy harvesting system under the joint action of Gaussian white noise and periodic signal, the statistical complexity method is applied to measure the stochastic resonance behavior and energy harvesting efficiency of the system. Firstly, the statistical complexity and effective output power of the system are calculated with the help of numerical methods;secondly, the effects of the noise intensity, coupling coefficient, and other parameters on the stochastic resonance phenomenon and energy harvesting efficiency of the system are investigated in depth;and lastly, the role of the stochastic resonance and the energy harvesting efficiency of the system is explained from the perspective of information theory. The results show that the non-monotonic evolution trend of the statistical complexity curve implies that the system generates a stochastic resonance phenomenon;the selection of appropriate noise intensity, coupling coefficient, and damping coefficient can enhance the stochastic resonance behavior of the system. In addition, the mean-square voltage and effective output power curves have the same evolution law as the statistical complexity curve, i.e., when the system generates stochastic resonance behavior, the energy harvesting efficiency is maximized.

关 键 词:统计复杂度 双稳态能量采集系统 高斯白噪声 随机共振 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象