检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学数学学院,山西 太原
出 处:《应用数学进展》2024年第5期2445-2450,共6页Advances in Applied Mathematics
摘 要:设H和G是两个图,如果图H可以通过从图G的一个子图中收缩边然后删除产生的环和平行边得到,我们就把图H叫做图G的一个minor。如果图G没有同构于图H的minor,我们称图G为H-minor-free图。图论中很多猜想都与H-minor-free图有关,例如Hadwiger猜想和Tutte 4-流猜想等。为了推动这些猜想的解决,我们目前非常关注Petersen-minor-free图的结构。由于它们都是15条边的3-连通图,直接刻画起来比较困难。因此为了刻画Petersen-minor-free图,许多学者尝试对每个边数小于15的3-连通图进行刻画去接近Petersen-minor-free图。记P0为Petersen收缩两条完美匹配边和一条非完美匹配边得到的子图基础上添加一条边得到的13条边的图。本文下面将给出完整的4-连通P0-minor-free图的刻画。For two given graphs H and G, if H can be obtained from a subgraph of G by contracting edges then deleting the resulting loops and parallel edges, we call H a minor of G. If G has no minor isomorphic to H, G is H-minor-free, and H is a forbidden minor of G. In graph theory, many important conjectures are related to H-minor-free graphs such as Hadwiger’s conjecture and Tutte’s 4-flow conjecture. To solve the above conjectures, we attempt to characterize Petersen-minor-free graphs. Let H is a graph with 15 edges. It is difficult to characterize H-minor-free graphs, thus to characterize Petersen-minor-free graphs, many scholars try to characterize every 3-connected graph with edges less than 15 to get close to Petersen graph. We denote the graph obtained by contracting two edges of a perfect matching of the Petersen, contracting one other edge and adding one edge. In this paper, we characterize 4-connected P0-minor-free graphs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7