检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安建筑科技大学理学院,陕西 西安
出 处:《应用数学进展》2024年第6期2627-2640,共14页Advances in Applied Mathematics
摘 要:多组学整合分析可以利用不同组学之间的互补信息,有利于系统全面地理解癌症疾病的分子生物学机制。多组学数据的高维小样本属性,导致传统的生存分析模型存在严重的过拟合问题。深度学习模型可以从高维数据中进行自动特征提取,在处理复杂的多组学数据方面具有显著优势。为了有效地整合多组学数据,本文提出了基于对抗自编码器的多组学特征提取网络。结合1D-CNNCox生存分析模型,构建了基于多组学融合和生成对抗网络的GAN-1DCCox模型。在8种不同癌症类型的TCGA数据集上进行了消融和对比实验,相比流行的生存分析基准模型,GAN-1DCCox模型取得了更高的C指数值。结果表明GAN-1DCCox模型能够有效地融合多组学数据,筛选出重要的预后特征基因,提升了模型的生存预测性能和稳健性。Multi-omics integration analysis can utilize complementary information from different omics, beneficial for a more systematic and comprehensive understanding of the molecular biology mechanisms of cancer diseases. The high-dimension small-sample size of multi-omics data leads to serious overfitting issues in traditional survival analysis models. Deep learning models can automatically extract features from high-dimensional data and have significant advantages in processing complex multi-omics data. In this study, we proposed a survival analysis model based on multi-omics integration and adversarial autoencoder, called GAN-1DCCox model, which consists of a multi-omics feature extraction module based on generative adversarial networks and a 1D-CNNCox survival analysis module. GAN-1DCCox model achieved the highest C-index values in both ablation and comparative experiments on TCGA datasets of 8 different cancer types. It indicates that GAN-1DCCox model can effectively integrate multi-omics data and screen out important prognostic signature genes, and thereby improving the prediction performance and robustness of survival analysis model.
关 键 词:生存分析 多组学融合 对抗自编码器 生成对抗网络
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.112.142