检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北方工业大学理学院,北京
出 处:《应用数学进展》2024年第6期2845-2857,共13页Advances in Applied Mathematics
摘 要:近几年来,卷积神经网络(CNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)和注意力机制模型等深度学习技术,在金融科技领域尤其是股价预测和量化交易策略的制定上,已经成为一个非常活跃的研究领域。论文通过分析上证50指数及其成分股的数据,验证了BiGRU-CNN-Attention模型在预测准确性上的优势;考虑到不同投资者的风险承受能力和收益预期,论文设计了保守型、稳健型和极端激进型三种不同风险偏好的投资策略,揭示了在风险和回报之间平衡的效果。结果表明,结合深度学习模型预测和适当的投资策略,不仅可以有效提升投资组合的性能,还可以为投资者提供了定制化的投资方案,进一步凸显深度学习技术在金融市场决策中的应用潜力。In recent years, deep learning technologies such as Convolutional Neural Networks (CNN), Long Short Term Memory Networks (LSTM), Gated Recurrent Units (GRU), and Attention Mechanism Models have become an active research field in the field of financial technology, especially in stock price prediction and quantitative trading strategy formulation. The paper verifies the advantage of the BiGRU-CNN Attention model in prediction accuracy by analyzing the data of the Shanghai Stock Exchange 50 Index and its constituent stocks;considering the risk tolerance and return expectations of different investors, the paper designs three investment strategies with different risk preferences: conservative, robust, and extremely aggressive, revealing the effect of balancing risk and return. The results indicate that combining deep learning models with appropriate investment strategies can not only effectively improve the performance of investment portfolios, but also provide customized investment plans for investors, further highlighting the potential application of deep learning technology in financial market decision-making.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.122