(M, i)-quasi-Stirling排列的欧拉多项式的实根性  

Real-Rootedness of Eulerian Polynomials on (M, i)-quasi-StirlingPermutations

在线阅读下载全文

作  者:陈梦瑜 

机构地区:[1]浙江师范大学数学系, 浙江 金华

出  处:《应用数学进展》2024年第6期2975-2983,共9页Advances in Applied Mathematics

摘  要:多重集上的 quasi-Stirling 排列作为 Stirling 排列的推广,其关于统计量的计数多项式的γ-正性、实根性等组合性质引起了众多学者的广泛关注。本文通过应用由Yan-Zhu 引入的quasi-Stirling排列与相关标号树之间的组合双射给出了(M, i)-quasi-Stirling 排列的欧拉多项式的递归关系,并在此基础上证明了该类多项式的实根性,从而得到了 Ma-Pan 关于 (M, i)-多重集排列的欧拉多项式实根性结论的类比结果。quasi-Stirling permutations were introduced as a generalization of Stirling permuta- tions. The combinatorial properties of associated polynomials on quasi-Stirling permu- tations including the gamma-positivity and the real-rootedness have been extensively exploited in the literature. The main objective of this paper is to prove that theEulerian polynomial on (M, i)-quasi-Stirling permutations is real-rooted. This is ac-complished by deriving the recurrence relations on the related polynomials via the bijection between quasi-Stirling permutations and certain labeled trees introduced by Yan-Zhu. Our result is an analogue of the result due to Ma-Pan concerning thereal-rootedness of the Eulerian polynomial on (M, i)-permutations.

关 键 词:quasi-Stirling排列 标号树 实根性 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象