检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈梦瑜
机构地区:[1]浙江师范大学数学系, 浙江 金华
出 处:《应用数学进展》2024年第6期2975-2983,共9页Advances in Applied Mathematics
摘 要:多重集上的 quasi-Stirling 排列作为 Stirling 排列的推广,其关于统计量的计数多项式的γ-正性、实根性等组合性质引起了众多学者的广泛关注。本文通过应用由Yan-Zhu 引入的quasi-Stirling排列与相关标号树之间的组合双射给出了(M, i)-quasi-Stirling 排列的欧拉多项式的递归关系,并在此基础上证明了该类多项式的实根性,从而得到了 Ma-Pan 关于 (M, i)-多重集排列的欧拉多项式实根性结论的类比结果。quasi-Stirling permutations were introduced as a generalization of Stirling permuta- tions. The combinatorial properties of associated polynomials on quasi-Stirling permu- tations including the gamma-positivity and the real-rootedness have been extensively exploited in the literature. The main objective of this paper is to prove that theEulerian polynomial on (M, i)-quasi-Stirling permutations is real-rooted. This is ac-complished by deriving the recurrence relations on the related polynomials via the bijection between quasi-Stirling permutations and certain labeled trees introduced by Yan-Zhu. Our result is an analogue of the result due to Ma-Pan concerning thereal-rootedness of the Eulerian polynomial on (M, i)-permutations.
关 键 词:quasi-Stirling排列 标号树 实根性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249