检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:路斯文
出 处:《应用数学进展》2024年第9期4119-4128,共10页Advances in Applied Mathematics
摘 要:本文基于不可行性度量和互补约束优化模型的角度研究最小约束违背凸优化问题。首先我们对约束不相容的凸优化问题建立了最小约束违背优化模型。当问题中的约束相容时,该模型可退化为原始问题。当约束不相容时,该模型等价于某个MPCC问题。其次我们证明了该等价问题的W-稳定性。最后我们用增广拉格朗日方法求解该等价问题,证明了该方法生成的点列收敛到等价MPCC问题的W-稳定点。In this paper, the problem of least constrained contracorvex optimization is studied from the perspective of the infeasibility measure and the complementary constraint optimization model. Firstly, we establish a minimum constraint violation optimization model for the convex optimization problem with incompatible constraints. When the constraints in the problem are compatible, the model can degenerate to the original problem. When the constraints are incompatible, the model is equivalent to an MPCC problem. Second, we demonstrate the W-stability of the equivalence problem. Finally, we use the augmented Lagrangian method to solve the equivalence problem, and prove that the point series generated by the method converges to the W-stable point of the equivalent MPCC problem.
关 键 词:最小约束违背优化问题 MPCC W-稳定点 增广拉格朗日方法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.121.38