检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州交通大学数理学院,甘肃 兰州
出 处:《应用数学进展》2024年第10期4486-4497,共12页Advances in Applied Mathematics
摘 要:风能因其安全、可再生、环保等显著优势而受到世界各国的重视,为了准确预测风速时间序列,本文使用宁夏回族自治区麻黄山共17,376条风速数据,提出了一种基于集合经验模态分解(EEMD)、长短期记忆网络(LSTM)、鲸鱼优化算法(WOA)组成的混合风速预测模型,并且与BP神经网络、CEEMDAN-LSTM-PSO (完全集合经验模态分解–长短期记忆网络–粒子群优化算法)、EMD-LSTM-RIME (经验模态分解–长短期记忆网络–霜冰优化算法)等模型进行对比实验,结果表明本文提出的EEMD-LSTM-WOA模型有着更稳定、更准确的预测性能。之后对EEMD-LSTM-WOA模型进行消融试验,结果显示去掉EEMD分解后,RMSE和MAPE分别增加了203.97%和187.47%,表明EEMD极大提升了整个模型的准确性和稳定性;去掉鲸鱼优化算法后,模型的RMSE和MAPE分别增加了78.34%和74.93%,说明最优化方法对整个模型的准确性和稳定性也有较大的促进作用。Wind energy has garnered global attention due to its notable advantages, including safety, renewability, and environmental friendliness. To accurately predict wind speed time series, this paper utilizes 17,376 wind speed data points from Ma Huang Mountain in the Ningxia Hui Autonomous Region. We propose a hybrid wind speed prediction model that combines ensemble empirical mode decomposition (EEMD), long short-term memory network (LSTM), and whale optimization algorithm (WOA). Comparative experiments were conducted with models such as BP neural network, CEEMDAN-LSTM-PSO (complete ensemble empirical mode decomposition-long short-term memory network-particle swarm optimization), and EMD-LSTM-RIME (empirical mode decomposition-long short-term memory network-Rimoglio optimization algorithm). The results indicate that our proposed EEMD-LSTM-WOA model exhibits more stable and accurate prediction performance. Subsequently, ablation experiments were performed on the EEMD-LSTM-WOA model. The findings revealed that upon removing EEMD d
关 键 词:风速预测 混合预测模型 集合经验模态分解 长短期记忆网络 鲸鱼优化算法
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170