检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学数学学院,山西 太原
出 处:《应用数学进展》2025年第1期185-193,共9页Advances in Applied Mathematics
基 金:本研究由中国国家自然基金(Grant No.11001194)支持。
摘 要:设ℳ和N是无I1或I2型中心直和项的von Neumann代数,其单位元分别为I和I′。本文证明非线性双射Φ:ℳ→N混合Lie可乘,即Φ([ [ A,B ],C ]∗)=[ [ Φ(A),Φ(B) ],Φ(C) ]∗,∀A,B,C∈ℳ,当且仅当存在线性*-同构和共轭线性*-同构的直和Ψ:ℳ→N使得Φ(A)=Φ(I)Ψ(A),∀A∈ℳ,其中Φ(I)∈N是可逆中心元且Φ(I)2=I′。该结论将因子von Neumann代数上的非线性混合Lie可乘双射的结果推广到无I1或I2型中心直和项的von Neumann代数。Let ℳand Nbe von Neumann algebras with no central summands of type I1or I2, Iand I′be the identities of them. This paper proves that a bijective map Φ:ℳ→Nis mixed Lie multiplicative, that is, Φ([ [ A,B ],C ]∗)=[ [ Φ(A),Φ(B) ],Φ(C) ]∗,∀A,B,C∈ℳif and only if Φ(A)=Φ(I)Ψ(A)for all A∈ℳ, where Ψ:ℳ→Nis a direct sum of a linear *-isomorphism and a conjugate linear *-isomorphism, Φ(I)is a central element in Nwith Φ(I)2=I′. The results about mixed Lie multiplicative maps on factor von Neumann algebras are generalized to von Neumann algebras with no central summands of type I1or I2.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.84.11