基于多元高斯混合模型的图像去噪算法  

Image Denoising Algorithm Based on Multivariate Gaussian Mixture Model

作  者:田越 贾小宁 

机构地区:[1]长春理工大学数学与统计学院,吉林 长春 [2]长春理工大学中山研究院遥感技术与大数据分析实验室,广东 中山

出  处:《应用数学进展》2025年第2期135-149,共15页Advances in Applied Mathematics

基  金:吉林省自然科学基金(NO.20240101298JC);国家自然科学基金(NO.12171054)。

摘  要:高光谱图像(Hyperspectral Images, HSIs)在遥感和医学成像等领域具有广泛的应用,但在采集过程中容易受到各种噪声的干扰。尽管目前已有多种去噪方法应用于高光谱图像处理,但这些方法在应对复杂光谱特征和复杂或非均匀噪声分布时仍面临挑战,且部分方法可能导致图像细节的丢失,降低光谱数据的真实性和有效性。为克服这些不足,文章提出了一种基于多元高斯混合模型的高光谱图像去噪方法。该方法将噪声建模为多元高斯混合模型,通过多模态特征表示图像的复杂光谱结构,以更好地适应不同光谱分布。我们采用变分贝叶斯(Variational Bayes, VB)方法进行参数估计,从而改善了传统期望最大化(EM)算法易于陷入局部最优的局限性,提高了参数估计的稳定性和模型收敛效率。实验结果表明,本文方法在多个数据集和多种噪声情况下均表现出优异的去噪效果,还能更好地保持光谱特性和图像结构的一致性,验证了其在高光谱图像去噪任务中的有效性。Hyperspectral Images (HSIs) have widespread applications in fields such as remote sensing and medical imaging, but they are often subject to various types of noise during the acquisition process. Despite the availability of numerous denoising methods for HSI processing, these methods still face challenges in handling complex spectral features and non-uniform noise distributions, which may lead to the loss of image details and compromise the authenticity and effectiveness of spectral data. To address these shortcomings, this paper proposes a hyperspectral image denoising method based on a multivariate Gaussian mixture model. The proposed method models noise using a multivariate Gaussian mixture model, employing multimodal features to represent the complex spectral structure of images, thereby better adapting to diverse spectral distributions. We adopt the Variational Bayes (VB) method for parameter estimation to overcome the limit

关 键 词:高光谱图像去噪 多元高斯混合模型 变分贝叶斯 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象