基于网络药理学与生物信息学探索天台乌药散治疗抑郁症的作用机制  

Explore the Mechanism of TiantaiWuyao Powder in Treating Depression Based on Network Pharmacology and Bioinformatics

在线阅读下载全文

作  者:钟馨 木本荣 刘文雯 黄志航 梁小清 卢长青 王冬梅[1] 王海[1] 

机构地区:[1]成都中医药大学,四川 成都

出  处:《临床医学进展》2021年第3期1033-1044,共12页Advances in Clinical Medicine

摘  要:目的:使用网络药理学和生物信息学的方法探讨天台乌药散治疗抑郁症的作用机制研究。方法:利用Batman-TCM得到天台乌药散的化学活性成分与作用靶点信息,使用Cytoscape3.7.2软件绘制成分–靶点相互作用网络关系;通过基因表达集芯片数据库(GEO DateSets)查找抑郁症芯片,利用R语言绘制差异基因的火山图与气泡图;运用String网站在线分析天台乌药散与抑郁症芯片的蛋白质相互作用关系图(Protein-Protein Interaction, PPI),基于此使用Cytoscape3.7.2构建化学成分–疾病靶点作用网络;使用DAVID6.8获得基因本体(Gene Ontology, GO)和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路分析,再使用Rstudio画出通路的气泡图。结果:通过构建成分–疾病靶点作用网络发现:β-紫罗酮(Beta-Ionone)、γ-氨基丁酸(Gamma-Aminobutyric Acid)、篙属酮(Artemisia Ketone)、(E)-9-异丙基-6-甲基-5,9-癸二烯-2-酮((E)-9-Isopropyl-6-Methyl-5,9-Decadiene-2-One)、百里香酚(Thymol)是发挥作用的主要化学成分,AR、OXT、IGF1、UBE2B、NEDD4是主要的作用靶点。GO和KEGG通路共发现有效通路(p value 【0.05) 111条,其中KEGG通路6条,GO通路(包括BP、MF、CC) 105条。KEGG通路主要富集于Calcium信号通路、癌症的通路、卵巢类固醇生成、ALS通络从而发挥抗抑郁的作用。结论:初步探索了天台乌药散治疗抑郁症的作用靶点和通路信息,表明天台乌药散治疗抑郁症是以“多成分、多靶点”网络的形式发挥作用,为天台乌药散抗抑郁的研发提供参考。Objective: To investigate the mechanism of TiantaiWuyao Powder in the treatment of depression using network pharmacology and bioinformatics. Methods: Batman-TCM was used to obtain the information of chemically active components and action targets of TiantaiWuyao Powder. Cytoscape3.7.2 software was used to draw the relation of components-targets interaction network. Find depression chips through the gene expression set chip database (GEO DateSets). A volcanic and bubble map of differential genes was drawn using R language. STRING website online was used to analyze the protein interaction between TiantaiWuyao Powder and depression chip (Protein-Protein Interaction, PPI). Use Cytoscape3.7.2 to construct chemical compositions-disease targets action network. Use David6.8 to obtain gene ontology (gene ontology, GO) and Kyoto Encyclopedia of Genes and Genomes (Kyoto Encyclopedia of Genes and Genomes, KEGG) pathway analysis. And then use the Rstudio to draw the bubble diagram of the path. Results: By constructing a network of components-disease targets, it was found that Beta-ionone, Gamma-aminobutyric acid, (E)-9-isopropyl-6-methyl-5,9-decadiene-2-one, and Thymol are the main chemical components of the action. AR, OXT, IGF1, UBE2B, NEED4 are the main targets. GO and KEGG pathways found 111 effective pathways (p value

关 键 词:网络药理学 生物信息学 天台乌药散 抑郁症 

分 类 号:R28[医药卫生—中药学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象