检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石文海 闫咏梅 黄雄[1] 刘星辰 潘科欣 杜晓辉[2] 王兴国 刘露[1] 张勤修[4] 王晓莉[5]
机构地区:[1]成都市第六人民医院,四川 成都 [2]电子科技大学光电学院,四川 成都 [3]微智科技–电子科技大学智能显微技术联合研究中心,四川 宜宾 [4]成都中医药大学附属医院,四川 成都 [5]成都市第二人民医院,四川 成都
出 处:《临床医学进展》2022年第12期11210-11218,共9页Advances in Clinical Medicine
摘 要:目的:研究青年女性早期妊娠心电图的特征性改变,为早期妊娠的女性提供一种新的早期筛查手段,提高早期妊娠的诊断和干预率。方法:152例早期妊娠的青年女性以及100例未妊娠的青年女性,通过医学SPSS软件对比两组人群的心电图差异,同时运用深度学习方法对心电图进行智能诊断,开发诊断软件。结果:早期妊娠女性的心电图出现窦性心动过速、窦性心律不齐、短PR间期、ST段压低、T波低平倒置、电轴左偏、胸导联低电压、逆钟向转位较未妊娠女性具有显著的统计学差异(P < 0.05)。智能诊断软件预测准确率达到90%,精确率100%,召回率83.33%。结论:青年女性早期妊娠心电图均为生理性变异,基于人工智能心电图诊断早期妊娠准确率、精确度均较高。Objectives: This paper detects the changes of electrocardiogram (ECG) characteristics of young women in early pregnancy, providing a new screening method for women in early pregnancy and improving the diagnosis and intervention rate of early pregnancy. Methods: A total of 152 young women with early pregnancy and 100 young women without pregnancy were included. The ECG dif-ferences between the two groups were compared by SPSS software, and deep learning method is used for intelligent diagnosis of ECG. A diagnostic software was developed. Results: The ECG charac-teristics of early pregnant women were sinus tachycardia, sinus arrhythmia, short PR interval, ST segment depression, T wave inversion, left axis deviation, chest lead low voltage and inverse clock transposition, which had significant statistical differences compared with non-pregnant women (P < 0.05). The accuracy rate, precision rate and recall rate of intelligent diagnostic software reach 90%, 100%, and 83.33% respectively. Conclusions: The ECG characteristics of young women in early pregnancy are physiological variations. The accuracy and precision of early pregnancy diagnosis based on artificial intelligence are high.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15