检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《临床医学进展》2025年第1期211-217,共7页Advances in Clinical Medicine
摘 要:室间隔缺损(Ventricular Septal Defect, VSD)是临床上最常见的先天性心脏疾病(Congenital heart disease, CHD),不仅可单独发生,也可与其他复杂心脏畸形共存。VSD手术治疗在降低患儿的病死率和提高其生活质量方面具有不可忽视的作用。手术前心力衰竭(Heart Failure, HF)的准确诊断及干预是提高手术成功率、降低术后不良事件发生的关键。在成人心力衰竭诊断中常将脑钠肽(Brain Natriuretic Peptide, BNP)等生物标志物作为诊断和治疗的依据,然而小儿心力衰竭及先天性心脏病,没有任何临床生物标志物作为诊断或治疗的标准指南。在信息时代,基于机器学习(Machine Learning, ML)算法建立的模型可提高对相关危险因素预测的准确性。本文结合相关文献对室间隔缺损术前心力衰竭及术后不良事件发生的预测因素进行总结。Ventricular Septal Defect (VSD) is the most common congenital heart disease (CHD) clinically, which can occur either alone or in combination with other complex heart malformations. Surgical treatment of VSD plays a significant role in reducing mortality and improving the quality of life of affected children. Accurate diagnosis and intervention for heart failure (HF) before surgery are crucial for enhancing surgical success rates and minimizing postoperative adverse events. In adult heart failure diagnosis, biomarkers such as brain natriuretic peptide (BNP) are often used as a basis for diagnosis and treatment. Nevertheless, for pediatric heart failure and congenital heart disease, there are no clinical biomarkers serving as standard guidelines for diagnosis or treatment. In the information era, models based on machine learning (ML) algorithms can improve the accuracy of predicting relevant risk factors. This article summarizes the predictive factors for preoperative heart failure and postoperative adverse events in patients with ventricular septal defects, drawing on relevant literature.
关 键 词:室间隔缺损 小儿心力衰竭 术后不良事件 生物标志物 机器学习
分 类 号:R54[医药卫生—心血管疾病]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90