基于汉字简繁转换的汉日神经机器翻译数据增强研究  被引量:1

Research on Data Augmentation for Chinese-Japanese Neural Machine Translation Based on Conversions between Traditional Chinese and Simplified Chinese

在线阅读下载全文

作  者:张津一 高忠辉 郭聪 

机构地区:[1]沈阳理工大学,信息科学与工程学院,辽宁 沈阳

出  处:《人工智能与机器人研究》2023年第2期69-76,共8页Artificial Intelligence and Robotics Research

摘  要:本文提出了一种基于汉字简繁转换的神经机器翻译(Neural Machine Translation, NMT)数据增强方法,旨在通过利用简繁转换表将源端文字替换为目标端文字,从而融合汉字简繁转换信息,并提高翻译质量。本文将此方法应用于汉日机器翻译任务,实验结果表明此方法是一种有效的数据增强方法,可以显著地提高汉日机器翻译质量。This paper proposed a neural machine translation (NMT) data augmentation method based on conversions between Traditional Chinese and Simplified Chinese. The method aimed to integrate the information of conversions between Traditional Chinese and Simplified Chinese by replacing the source text with target text according to the Chinese characters mapping table, thereby improving the translation quality. The method was applied to the Chinese-Japanese machine translation task, and the experimental results demonstrated that this approach was an effective data augmentation method and could significantly improve the translation quality of Chinese-Japanese machine translation.

关 键 词:神经机器翻译 简繁汉字转换 数据增强 汉日翻译 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象