基于灰狼优化算法的LSTM风速预测方法研究  

Wind Speed Prediction Model Based on GWO-LSTM

在线阅读下载全文

作  者:谭铮瑜 

机构地区:[1]南宁师范大学数学与统计学院,广西 南宁

出  处:《人工智能与机器人研究》2024年第3期532-540,共9页Artificial Intelligence and Robotics Research

摘  要:风力发电的主要决定因素是风速,而风速具有不稳定性特征,准确预测风速对调度风力发电系统,提高风能转换效率等具有非常重要的意义。针对目前风速预测中,智能模型参数设置难的问题,本文提出了一种基于灰狼优化算法(GWO)对长短期记忆模型(LSTM)超参数进行寻优的GWO-LSTM模型,并利用Halifax风速数据集进行风速的预测。实验结果表明,GWO-LSTM在预测风速上能获得更高的精度,在均方根误差(RMSE)、平均绝对误差(MAE)及相关系数R2上,比传统的LSTM、GRU、Simple RNN效果更优,这充分说明了本研究提出的GWO-LSTM算法在风速预测上有较好的应用前景。The primary factor of wind energy production is wind speed, which is unstable. For scheduling wind power-producing systems and increasing wind energy conversion efficiency, accurate wind speed forecasting is crucial. This paper proposes a GWO-LSTM model based on the gray wolf optimization algorithm (GWO) to find the optimization of the hyperparameters of the long and short-term memory model (LSTM), and uses the Halifax wind speed dataset for wind speed prediction in order to address the issue that it is difficult to set the parameters of intelligent models in wind speed prediction. The experimental results demonstrate that the GWO-LSTM algorithm proposed in this study has better application prospects in wind speed prediction because it can predict wind speed with a higher degree of accuracy and performs better than the traditional LSTM, GRU, and Simple RNN in terms of root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (R2).

关 键 词:灰狼优化算法 超参数 长短期记忆网络 风速 时间序列预测 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象