检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《人工智能与机器人研究》2025年第2期313-319,共7页Artificial Intelligence and Robotics Research
摘 要:为解决单目自监督深度估计在缺乏准确真实深度时对复杂场景几何结构的刻画不足问题,本文在原有的基于图卷积网络(Graph Convolutional Network, GCN)的单目深度估计框架上,引入了图注意力网络(Graph Attention Network, GAT)机制,提出了一种GATDepth模型。该模型通过在解码器阶段采用图注意力模块,能够自适应地为相邻节点分配不同权重,从而更精细地保留场景中的几何拓扑关系与不连续性。DepthNet编码器利用CNN提取多层次视觉特征,而解码器则结合转置卷积上采样和GAT模块融合节点特征。通过目标图像与重构图像之间的光度、重投影及平滑性等多重损失进行自监督训练,模型在KITTI数据集上取得了优异的深度估计性能,尤其在远距物体和物体边缘等关键区域表现突出。实验结果表明,所提方法不仅在保证网络效率的同时更好地捕捉了场景关键几何信息,而且在缺乏高质量真实深度的条件下仍能获得可靠且精细的深度预测。To address the issue of insufficient depiction of complex scene geometry in monocular self-supervised depth estimation due to the lack of accurate ground truth depth, this paper proposes a GATDepth model based on the existing monocular depth estimation framework using Graph Convolutional Networks (GCN). The Graph Attention Network (GAT) mechanism is introduced into the model. By adopting graph attention modules in the decoder stage, the model can adaptively assign different weights to adjacent nodes, thereby more finely preserving the geometric topology and discontinuities in the scene. The DepthNet encoder extracts multi-level visual features using CNNs, while the decoder combines transposed convolutional upsampling and GAT modules to fuse node features. The model is trained in a self-supervised manner through multiple losses such as photometric, reprojection, and smoothness losses between the target image and the reconstructed image. The model achieves excellent de
关 键 词:图卷积网络 图注意力网络 GAT模块 自监督训练
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49