检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长安大学信息工程学院,陕西 西安
出 处:《社会科学前沿》2024年第8期78-83,共6页Advances in Social Sciences
摘 要:大学生学业危机问题是高校面临的现实难题,学业预警作为应对大学生学业危机的重要手段,普遍存在数据收集与分析不全面、预警系统缺乏个性化和针对性、缺乏有效的沟通协作等问题。本文分析了大数据技术应用在学业预警系统中的优势,提出了建立多源数据融合系统、定制化预警和干预方案、构建多渠道协作沟通机制等策略,以期提升大学生学业管理的效率和效果,为学生提供全方位、多层次的学业支持和帮扶。The academic crisis of college students is a real problem faced by colleges and universities. As an important means to deal with the academic crisis of college students, academic early warning generally has problems such as incomplete data collection and analysis, lack of personalization and pertinence of early warning system, and lack of effective communication and collaboration. This paper analyzes the advantages of big data technology in the academic early warning system, and proposes strategies such as establishing a multi-source data fusion system, customized early warning and intervention plans, and building a multi-channel collaborative communication mechanism, in order to improve the efficiency and effectiveness of college students’ academic management and provide students with all-round and multi-level academic support and assistance.
分 类 号:G64[文化科学—高等教育学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.212.110