检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]新疆巴音郭楞蒙古自治州气象局,新疆 库尔勒 [2]新疆农业气象台,新疆 乌鲁木齐 [3]福建省民航厦门空管站,福建 厦门
出 处:《气候变化研究快报》2023年第2期376-385,共10页Climate Change Research Letters
摘 要:本文以中国新疆西北部及环临中亚5国云水时空特征与其植被覆盖下垫面所对应的叶面积指数为研究对象,采用欧洲中心ERA5最新格点云水资料和低植被叶面积指数资料(0.25˚ × 0.25˚),统计分析了1980~2019年中亚地区空中云水资源的变化特征,并用低植被叶面积指数卫星遥感资料分析该地区植被分布特征。研究表明:云水时空特征与其植被覆盖下垫面所对应的叶面积指数有较好的对应关系,40年来该地区空中云水含量呈逐年在减少趋势,液态水含量减少较为明显,且月际云水含量不均,其中11月份液态水含量最高,2月份含量最低,冰水含量月际分布呈单一态势,1月份最大,8月份最少;冰水含量主要集中在500~300 hPa之间,液态水含量绝大部分在500 hPa以下;云水含量较丰富区能基本对应低植被叶面积指数大值区的实际状态。Based on the latest grid cloud water data of ERA5 in the European Center and the data of low vegetation leaf area index (0.25 × 0.25 degrees), the change sensing characteristics of air cloud water resources in Central Asia from 1980 to 2019 are analyzed, and the vegetation distribution characteristics of Central Asia are analyzed using the remote sensing data of low vegetation leaf area index satellite. The study shows that the content of cloud water in the air in this area is decreasing year by year, the content of liquid water is decreasing obviously, and the content of inter-month cloud water is uneven, of which the highest content of liquid water in November, the lowest in February, the inter-month distribution of ice water content is a single trend, the largest in January, the least in August;The content of ice water is mainly concentrated between 500~300 hPa, and the most of the liquid water content is below 500 hPa;The cloud water content is rich in the area which corresponds well to the large value area of low vegetation leaf area index.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49