检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]陆军工程大学指挥信息系统学院,江苏南京 [2]中国人民解放军96733部队74分队,湖南会同
出 处:《计算机科学与应用》2018年第11期1752-1761,共10页Computer Science and Application
基 金:江苏省自然科学基金青年基金面上资助项目(BK20140075);中国博士后科学基金第八批特别资助项目(2015T81081);第54批中国博士后面上项目一等资助(2013M542425);江苏省自然科学基金青年基金面上资助项目(BK20140073).
摘 要:语音是复杂的非线性信号,这使得基于线性理论的传统说话人识别系统性能难以进一步提高。结合语音特点,基于小波极大模方法(Wavelet Transform Modulus-Maxima Method, WTMM),提出一种语音多分形谱特征(Multifractal Spectrum Feature, MSF)提取方法,并将语音多分形谱特征与传统特征结合用于说话人识别,实验表明,在短语音说话人识别中,6维MSF与LPC结合,误识率相比单独使用LPC降低了6.4个百分点;而MSF与MFCC、LPC组合,误识率降至1.2%左右。采用贪婪策略对说话人识别的特征进行优选,从101维特征中优选出13维特征用于识别,实验结果表明优选后的特征参数能有效降低系统误识率,提高识别速度,误识率最低降至1.6%,识别时间减少约86%。Speech is one kind of complicated non-linear signal, so traditional speech or speaker recognition system based on the linear theory is difficult to be further improved. In this paper, a new method based on the WTMM (wavelet transform modulus-maxima method) is proposed, which can facilitate the extraction of speech signals in the multifractal spectrum feature (MSF). The multifractal spectrum feature combined with the traditional linear features can obviously enhance performance of speaker recognition system. Experiment results show that 6-dimensional MSF combined with 13-dimensional MFCC and 16-dimensional LPC make error rate decrease to 1.2% in short speech speaker recognition. Then greedy algorithm is used to select 13 dimensional features from 101-dimensional features set. The experiment results show that the optimal feature selective method can eliminate disturbance of other redundant features, and obviously reduce the error rate, and improve the computational speed. The error rate decreases to 1.6%, and computation time decreases about 86%.
关 键 词:说话人识别 多分形谱特征 小波极大模方法 高斯混合模型 特征选择
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49