基于Harris矩阵的脉冲耦合神经网络模型  

A Pulse Coupled Neural Network Model Based on Harris Matrix

在线阅读下载全文

作  者:潘改 

机构地区:[1]江苏师范大学电气工程及自动化学院,江苏 徐州

出  处:《计算机科学与应用》2021年第8期2064-2069,共6页Computer Science and Application

摘  要:分割含有弱边界、对比度低的图像目标时,传统的脉冲耦合神经网络模型难以得到有效的分割效果,主要原因是动态阈值的衰减时间常数固定,衰减速度固定,分割弱边界时,输出的脉冲信号难以准确描述目标区域,产生误分割现象。为了解决这一问题,本文采用Harris矩阵获取图像梯度信息,特别是弱边界的梯度信息,提出动态阈值的衰减速度与图像的梯度信息有关,当梯度信息大时,动态阈值的衰减快,当梯度信息小时,动态阈值的衰减速度慢,给出动态阈值的新定义。通过对弱边界、对比度低的图像进行仿真对比实验,说明本文算法的分割效果优于传统脉冲耦合神经网络模型。The traditional pulse coupled neural network model can not get an effective segmentation effect when the image object with weak boundary and low contrast is segmented. The main reason is that the decay time constant of the dynamic threshold is fixed and the decay speed is fixed, when the weak boundary is segmented, it is difficult for the output pulse signal to accurately describe the target region, resulting in false segmentation. In order to solve this problem, the Harris matrix is used to obtain the gradient information of the image, especially the gradient information of the weak boundary. It is proposed that the decay velocity of the dynamic threshold is related to the gradient information of the image. When the gradient information is large, the decay velocity of the dynamic threshold is fast, when the gradient information is small, the decay velocity of the dynamic threshold is slow, and a new definition of the dynamic threshold is given. Simulation experiments on weak edge and low contrast images show that the proposed algorithm is superior to the traditional pulse coupled neural network model.

关 键 词:脉冲耦合神经网络模型 动态阈值 衰减时间常数 Harris矩阵 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象