检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉纺织大学,计算机与人工智能学院,湖北 武汉
出 处:《计算机科学与应用》2023年第5期953-963,共11页Computer Science and Application
摘 要:在边缘和云环境中,使用图形处理单元(GPU)作为高速并行计算设备可以提高计算密集型应用程序的性能。随着要处理的数据量和复杂性的增加,多个相互依赖的组件序列在GPU上共存并共享GPU资源。由于缺乏用于动态GPU资源分配的低开销和在线技术会导致GPU使用不平衡并影响整体性能,提出了高效的GPU内存和资源管理器。管理器通过使用共享内存和动态分配部分共享GPU资源来提高整体系统性能。评估结果表明,与默认GPU并发多任务处理相比,动态资源分配方法能够将具有各种并发组件数的应用程序的平均性能提高29.81%。同时,使用共享内存可使性能提高2倍。In edge and cloud environments, using graphics processing units (GPUs) as high-speed parallel computing devices can improve the performance of computing intensive applications. As the amount and complexity of data to be processed increases, multiple interdependent component sequences coexist on the GPU and share GPU resources. Due to the lack of low overhead and online technology for dynamic GPU resource allocation, which can lead to uneven GPU usage and affect overall performance, an efficient GPU memory and resource manager is proposed. The manager improves overall system performance by using shared memory and dynamically allocating partial shared GPU resources. The evaluation results indicate that the dynamic resource allocation method can improve the average performance of applications with various concurrent component counts by 29.81% compared to the default GPU concurrent multitasking processing. At the same time, using shared memory can increase performance by 2×.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.8.67