检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学与应用》2023年第7期1420-1427,共8页Computer Science and Application
摘 要:自2020年以来,新冠疫情的迅速扩散,对全世界的社会经济和公共卫生造成了十分严重的影响。如何快速准确地诊断和预测潜在的新冠病例是当前亟需解决的问题。机器学习技术具有处理大量数据、提高预测准确率等优势,在疫情防控中有广泛应用。本文基于机器学习算法,对疑似新冠人员的预测进行研究。通过随机函数生成有效病例数据,并利用SVM (Support Vector Machine)分类模型对其进行训练,经过多次实验,我们发现该模型能够准确地预测疾病,而且具有较高的可靠性。Since 2020, the epidemic situation in COVID-19 has spread rapidly, which has had a very serious impact on social economy and public health all over the world. How to diagnose and predict potential COVID-19 cases quickly and accurately is an urgent problem at present. Machine learning technology has the advantages of processing large amounts of data and improving prediction accuracy, and has been widely used in epidemic prevention and control. Based on the machine learning algorithm, this paper studies the prediction of people suspected of COVID-19. The valid case data is generated by random functions and trained and tested using the SVM (Support Vector Machine) classification model, and after many experiments, we found that the model can accurately predict the disease and has high reliability.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3