检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学与应用》2023年第10期1918-1927,共10页Computer Science and Application
摘 要:话题检测与追踪技术随着信息处理技术以及人工智能技术的发展,已经取得了较好的发展,但在实际应用中,由于算法标注数据需求高、训练代价大,很难较好的落地应用。本文提出了基于MS-Cluster与Prompt-Learning的话题检测追踪技术,通过聚类分析过程初步进行话题聚合,在此基础上通过提示学习推理进行话题补偿,完成话题检测与追踪过程。该方法在包含13个话题的测试数据集上进行测试验证,证明该方法在零样本与低样本标注情况下有较好效果,同时相较于其他主流话题检测追踪技术在准确率与召回率上都有提升。Topic detection and tracking technology has been developing well with the development of information processing technology and artificial intelligence technology. However, in practical applications, it is difficult to achieve good deployment due to the high demand for algorithm annotated data and the large training cost. This article proposes a topic detection and tracking technology based on MS-Cluster and Prompt-Learning. The method performs topic aggregation through clustering analysis and topic supplementation through prompt learning reasoning to complete the topic de-tection and tracking process. The method was tested on a dataset of 13 topics, and it showed good results in the case of zero-shot learning and few-shot learning, and it outperformed other main-stream topic detection and tracking technologies in terms of accuracy and recall rate.
关 键 词:话题检测追踪技术 提示学习 小样本学习 聚类分析
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49