检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李明祥
机构地区:[1]河北金融学院金融研究所,河北 保定
出 处:《计算机科学与应用》2023年第10期1948-1964,共17页Computer Science and Application
摘 要:无证书全同态加密(CLFHE)把全同态加密和无证书加密两者的优势结合了起来,它吸引了人们关注的目光。目前人们基于带误差学习(LWE)问题提出了几个CLFHE方案。带舍入学习(LWR)问题是LWE问题的变形。它免除了LWE问题中计算代价高昂的高斯噪声抽样。迄今为止人们尚未提出基于LWR问题的CLFHE方案。本文利用Gentry、Sahai和Waters提出的近似特征向量技术,基于LWR问题设计了一个CLFHE方案,并在随机预言机模型下证明了它满足INDr-CPA安全性。与已有的基于LWE问题的CLFHE方案相比,所设计的方案免除了耗时的高斯噪声抽样而具有更高的计算效率。Certificateless fully homomorphic encryption (CLFHE) combines the advantages of fully homomor-phic encryption and certificateless encryption. Itcatches the attention of researchers. Several CLFHE schemes have been proposed based on the learning with errors (LWE) problem. The learning with rounding (LWR) problem is a variant of the LWE problem. It dispenses withthe costly Gaussian noise sampling required in the LWE problem. So far, no CLFHE scheme based on the LWR problem has been proposed. This paper designs a CLFHE scheme based on the LWR problem using Gentry, Sahai, and Waters’s approximate eigenvector technique and proves that the designed scheme satisfies INDr-CPA securityin the random oracle model. Compared with existing CLFHE schemes based on the LWE problem, the proposedschemedispenses with the costly Gaussian noise sampling and en-joys higher computational efficiency.
关 键 词:全同态加密 无证书 LWE问题 LWR问题 随机预言机模型
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7